Intracellular Neural Recording with Pure Carbon Nanotube Probes
نویسندگان
چکیده
The computational complexity of the brain depends in part on a neuron's capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because they require intracellular recording methods to detect and resolve millivolt- scale synaptic potentials. Although glass electrodes are widely used for intracellular recordings, novel electrodes with superior mechanical and electrical properties are desirable, because they could extend intracellular recording methods to challenging environments, including long term recordings in freely behaving animals. Carbon nanotubes (CNTs) can theoretically deliver this advance, but the difficulty of assembling CNTs has limited their application to a coating layer or assembly on a planar substrate, resulting in electrodes that are more suitable for in vivo extracellular recording or extracellular recording from isolated cells. Here we show that a novel, yet remarkably simple, millimeter-long electrode with a sub-micron tip, fabricated from self-entangled pure CNTs can be used to obtain intracellular and extracellular recordings from vertebrate neurons in vitro and in vivo. This fabrication technology provides a new method for assembling intracellular electrodes from CNTs, affording a promising opportunity to harness nanotechnology for neuroscience applications.
منابع مشابه
A cone-shaped 3D carbon nanotube probe for neural recording.
A novel cone-shaped 3D carbon nanotube (CNT) probe is proposed as an electrode for applications in neural recording. The electrode consists of CNTs synthesized on the cone-shaped Si (cs-Si) tip by catalytic thermal chemical vapor deposition (CVD). This probe exhibits a larger CNT surface area with the same footprint area and higher spatial resolution of neural recording compared to planar-type ...
متن کاملSub-10-nm intracellular bioelectronic probes from nanowire-nanotube heterostructures.
The miniaturization of bioelectronic intracellular probes with a wide dynamic frequency range can open up opportunities to study biological structures inaccessible by existing methods in a minimally invasive manner. Here, we report the design, fabrication, and demonstration of intracellular bioelectronic devices with probe sizes less than 10 nm. The devices are based on a nanowire-nanotube hete...
متن کاملInterfacing neurons both extracellularly and intracellularly using carbon-nanotube probes with long-term endurance.
This study demonstrates that carbon nanotubes (CNTs) can be fabricated into probes directly, with which neural activity can be monitored and elicited not only extracellularly but also intracellularly. Two types of CNT probes have been made and examined with the escape neural circuit of crayfish, Procambarus clarkia. The CNT probes are demonstrated to have comparable performance to conventional ...
متن کاملNanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues.
Semiconductor nanowires configured as the active channels of field-effect transistors (FETs) have been used as detectors for high-resolution electrical recording from single live cells, cell networks, tissues and organs. Extracellular measurements with substrate supported silicon nanowire (SiNW) FETs, which have projected active areas orders of magnitude smaller than conventional microfabricate...
متن کاملOutside looking in: nanotube transistor intracellular sensors.
Nanowire-based field-effect transistors, including devices with planar and three-dimensional configurations, are being actively explored as detectors for extra- and intracellular recording due to their small size and high sensitivities. Here we report the synthesis, fabrication, and characterization of a new needle-shaped nanoprobe based on an active silicon nanotube transistor, ANTT, that enab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013